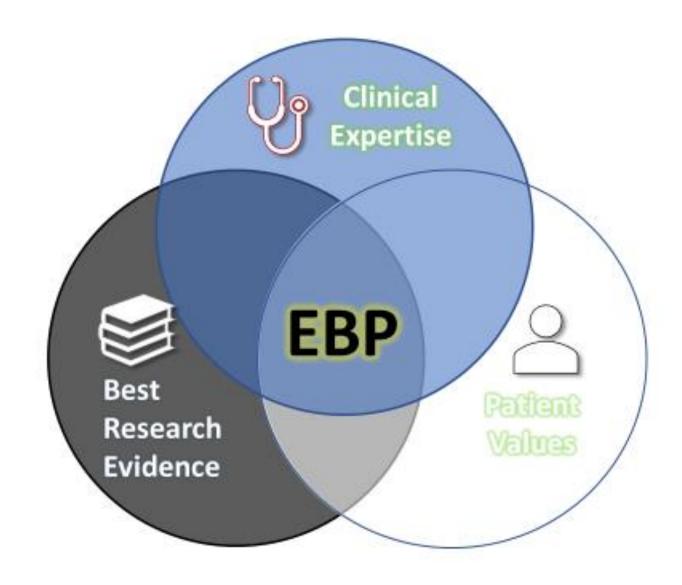


Hands-on Mechanical Assessment Tool (MAT)-An Introduction

Presented By:

Jacelyn Goh (Clinical Educator/ Product Specialist) jacelyn@lindsrehab.com.au

Objectives:


Understanding the process of the MAT assessment

- Increase confidence to complete hands-on assessments
 - Bony landmarks and their positions of symmetry
 - Basic manual handling for MAT Ax
 - Common postural abnormalities
 - Basic translation of MAT Ax findings to wheelchair and seating set up
- Explore interventions to support a variety of muscle tone presentations in wheelchair seating.
- Simple wheelchair adjustments to assist with postural changes
- Explore complimentary tools to understand a user's posture and postural changes during the day

Evidence-based Seating Assessments

Why do MAT evaluations?

To gain a deeper current seating posture and its impact on function

LINDS®
REHABILITATION
E Q U I P M E N T

- To understand the client's biomechanical and physical profile
- Development of client-centered goals with meaningful pathways of interventions.
 - Not just equipment related!
- Through the process, we explore:
 - current and previous equipment
 - postural changes, skin integrity, and pressure care management.
 - Sitting balance and impact on function from different surfaces
 - 24hr positioining needs

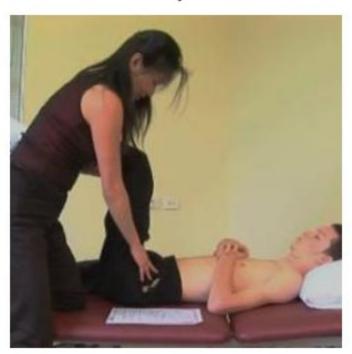
When to do MAT evaluations?

- LINDS® REHABILITATION EQUIPMENT
- As therapists, we should be asking "Why am I not doing a full MAT assessment on this client?"
- It may be because your client is currently mobilising/display good functional movements
- As a "rule of thumb" map everyone's pelvis

What does a Hands-on MAT assessment do?

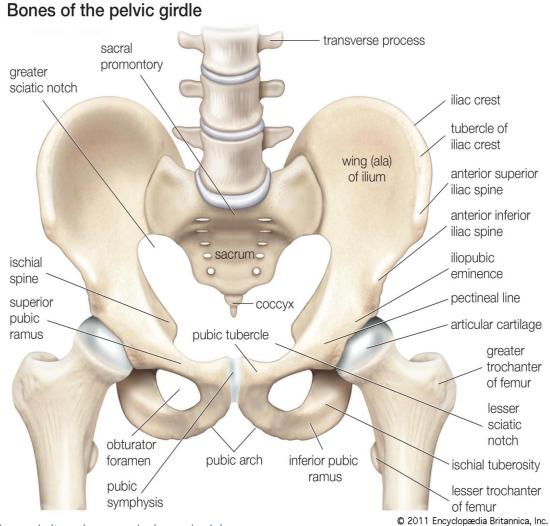
LINDS®
REHABILITATION
EQUIPMENT

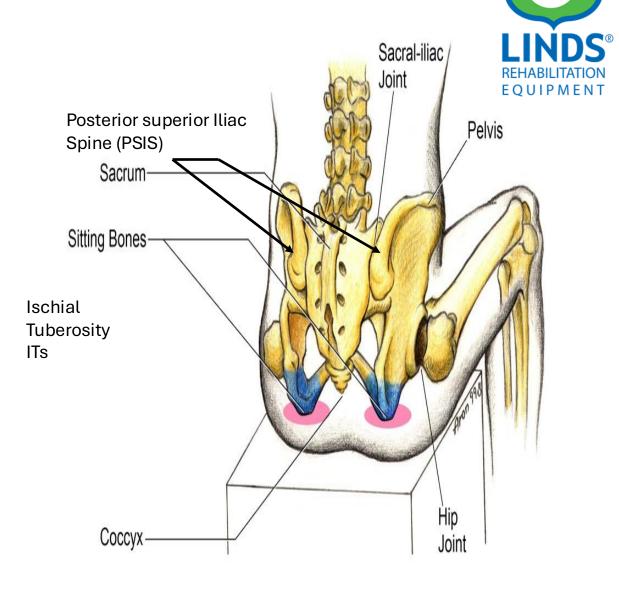
- 1. Assess transfer methods (in and out of seating system)
- 1. Assess body flexibility and identify any fixed or flexible deformities
- 2. Evaluate posture and pressure management options through simulated sitting scenarios
- 3. Examine how muscle tone and spasms affect posture and positioning
- 4. Determine the need for postural support by assessing functional sitting balance
- 5. Document seating goals and progress throughout trial and final seating system setups
- 6. Justify seating interventions with clinical reasoning in documentation or reports
- 7. Skin integrity check


Stages of MAT AX:

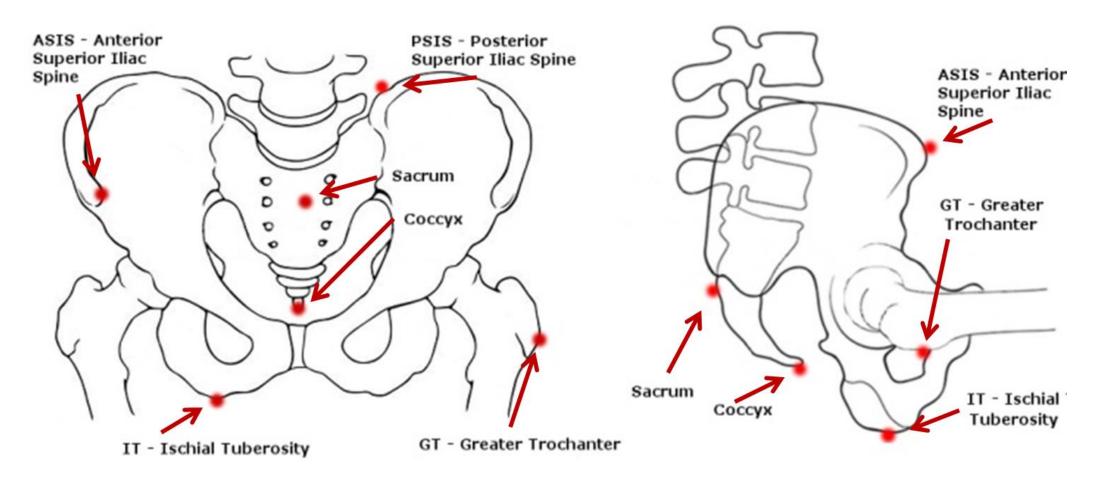
Postural assessment in existing seating system

Assessment in supine

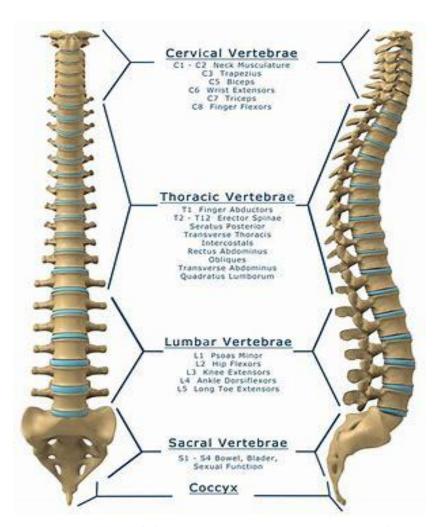

Assessment in sitting



https://aci.health.nsw.gov.au/networks/spinal-cord-injury/spinal-seating/module-3/conducting-the-mat


Get to know the bony landmarks

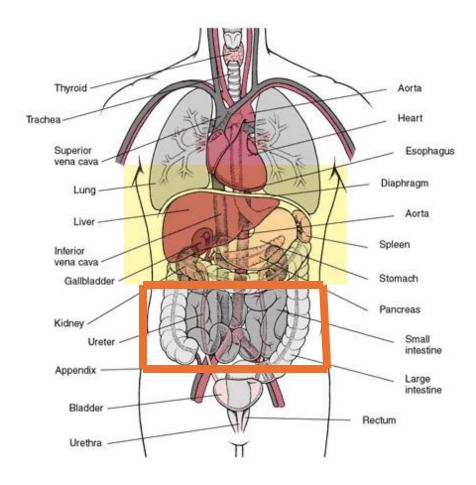
Pelvis and hips

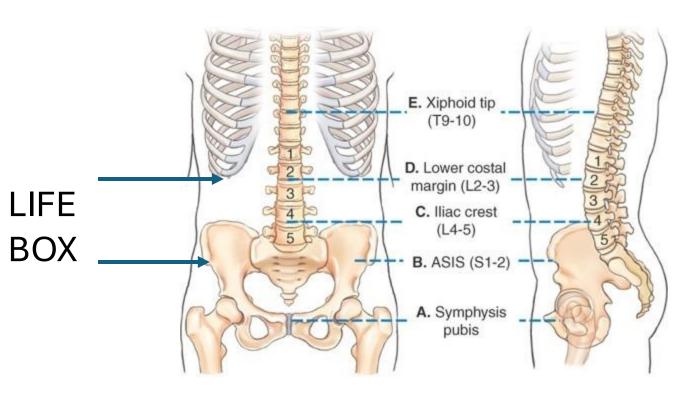


• Spine

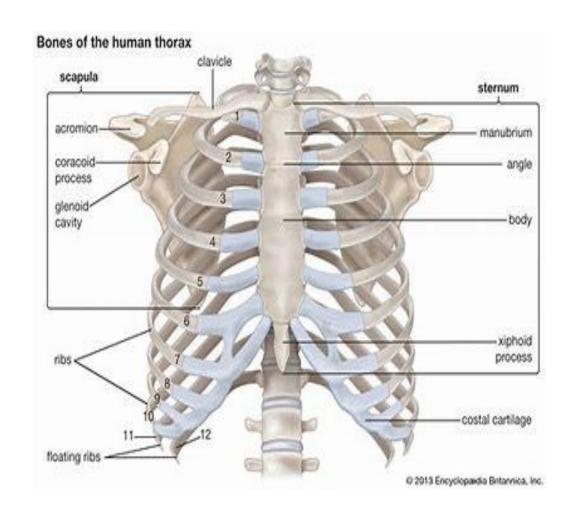
https://anatomy-medicine.com/nervous-system/116-the-spinal-cord.html

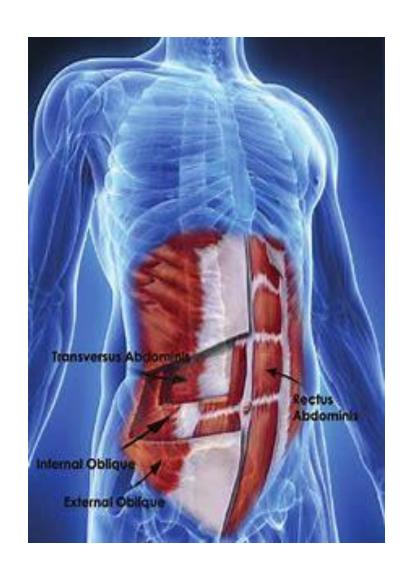
http://www.seatspecialists.com/products/knoedler-airchief-seat-choose-your-options.html




https://karo.co.za/knowledge-center/what-happens-when-you-sit-and-how-it-affects-your-body/

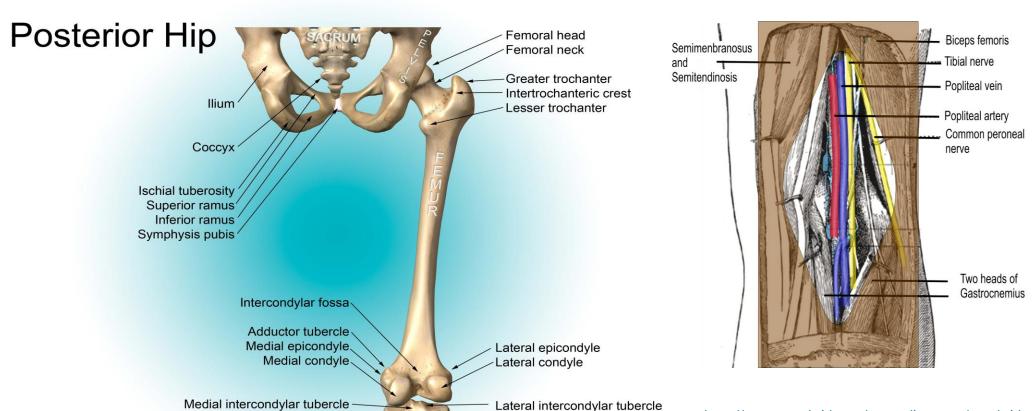
Life Box




 $\frac{https://889community.com/the-breath-part-one-basic-breath-natomy/}{}$

https://quizlet.com/345418418/chapter-9-lumbar-spine-sacrum-coccyx-radiographic-positioning-pathology-flash-cards/

Thoracic – Apexes Abdominal Wall

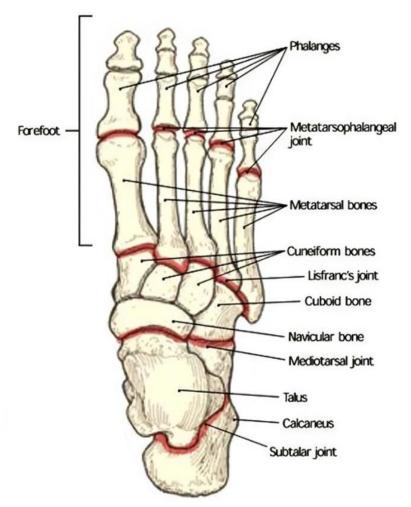


https://www.researchgate.net/figure/The-anatomy-of-the-abdominal-wall_fig1_283209177

Femur and Popliteal Fossa

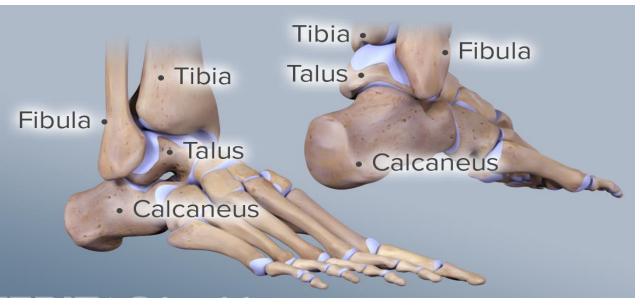
Lateral facet

Lateral condyle

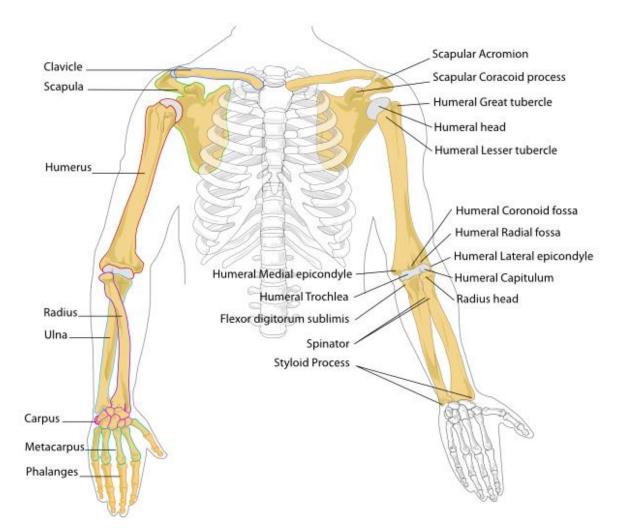

http://www.cambridgeorthopaedics.com/cambridgeanaest hetics/advancednerveblocks/popliteal%20block.htm

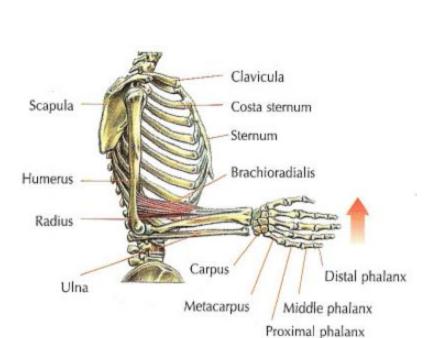
fpnotebook.com

Medial facet


Medial condyle

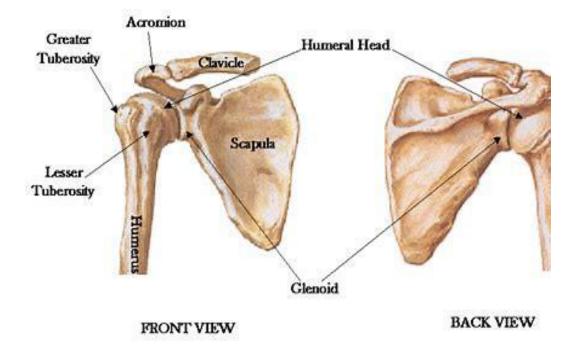
Forefoot and ankle (the lower is controlled by the hip and knee)

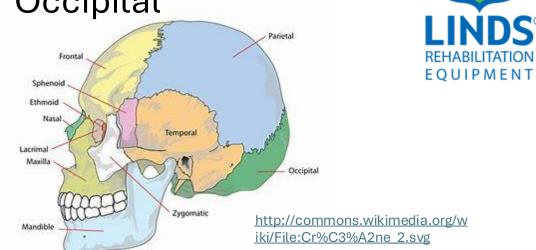


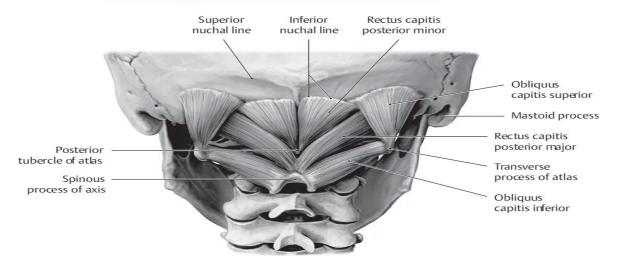


https://www.arthritis-health.com/types/osteoarthritis/ankle-joint-anatomy-and-osteoarthritis

Upper extremities




Shoulder Girdle



http://rrcmrt.wordpress.com/2012/07/16/shoulder-girdle-anatomy-tutorial/

• Skull – Sub

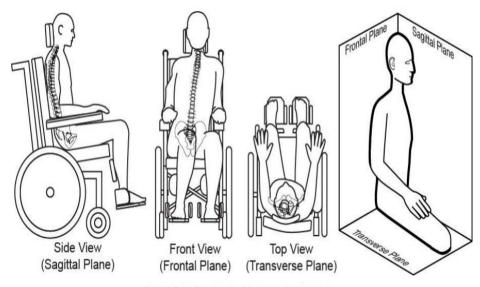
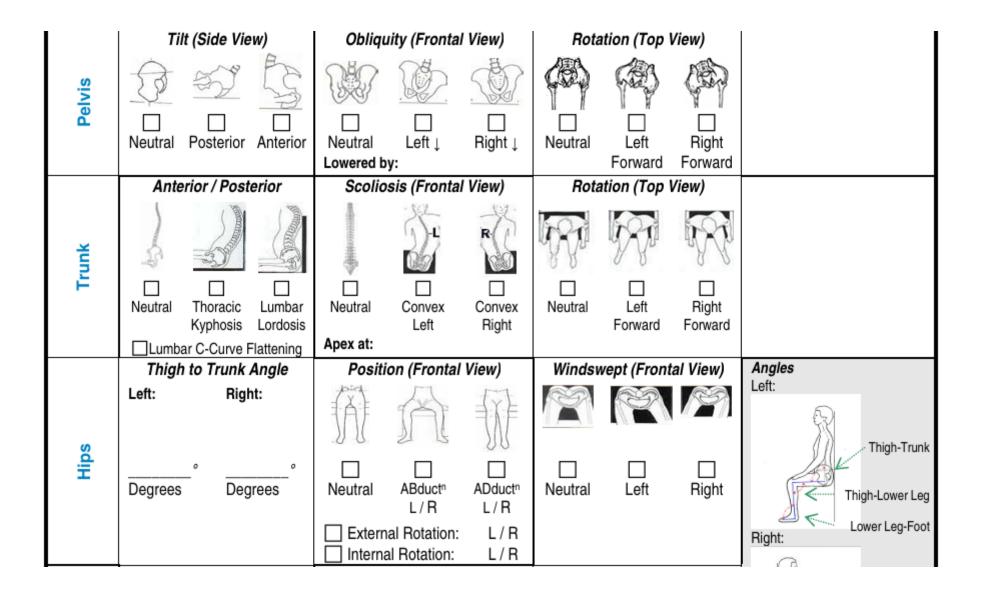
Occipital

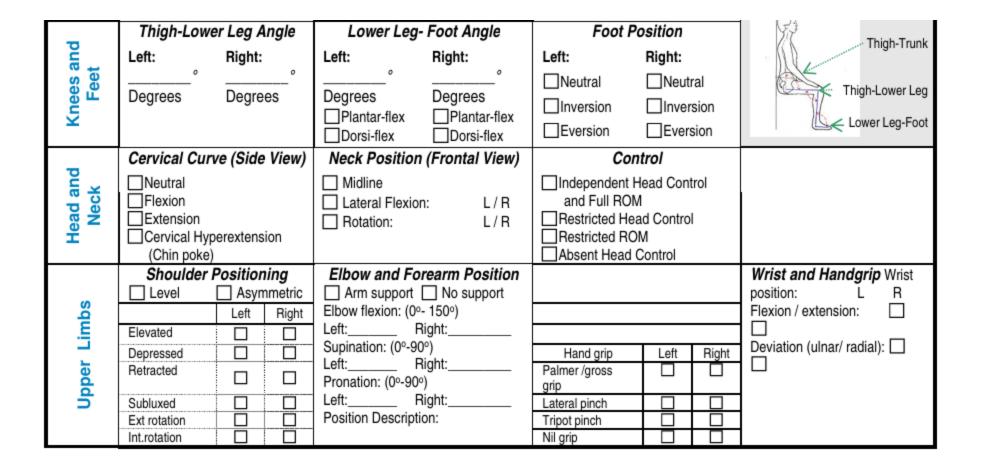
http://neupsykey.com/craniovertebral-junction-2/

Review all body planes of symmetry

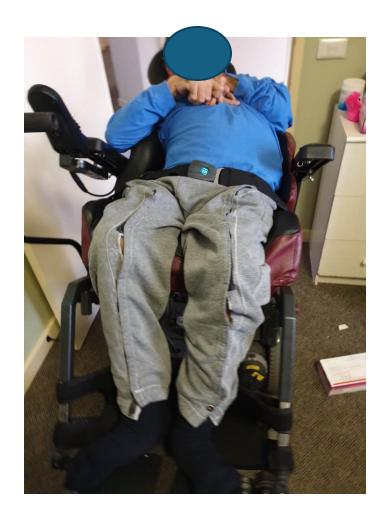
LINDS®
REHABILITATION
EQUIPMENT

- Consider what it means to be "Symmetrical"?
- What is a "neutral" sitting posture?
- What is a "position of comfort"?
- How do we use this information to increase our understanding and make sound clinical judgments about our client's seated postures?


Fig. 1.5: Describing postural deviations in three planes

MAT AX FORM



MAT AX FORM

What are we looking for in photos?

Positioning from transfer

Position before transferring out of the wheelchair

Before MAT / Interventions:



Sagittal

Frontal LHS Sagittal RHS Traverse

Phase One: Review of Existing Seated Posture

Visual

Phase One: Review of Existing Seated Posture

Hands-on, feel and record. Consent for photos. Highlight Landmarks.

Take the opportunity to dig deeper:

- History of current seating
- Transfers postural changes throughout day
- History of seating patterns (length of time)
- Daily activities completed in chair
- Level of comfort signs of discomfort
- Map out existing seating support surfaces.

Phase Two: Supine MAT Assessment

https://www.physicaltherapy.com/articles/wheelchair-seating-considerations-for-prop-

 $\frac{4785\#:\sim:text=Prop\%20sitter\%20One\%20way\%20of\%20looking\%20at\%20wheelchair_sitter\%2C\%20the\%20hands-$

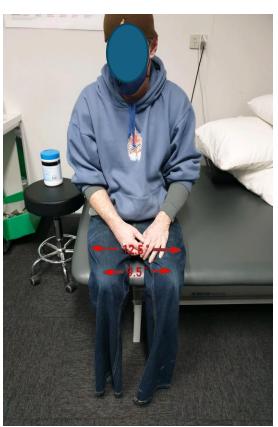
dependent%20sitter%2C%20and%20the%20prop%20sitter

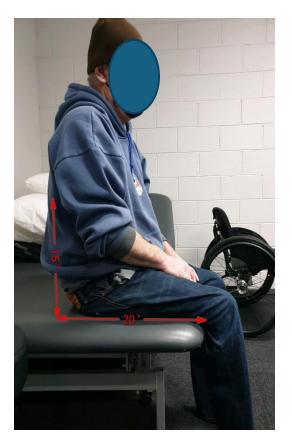
Visual

Phase Two: Supine MAT Assessment

Hands-on, feel and record findings Also note direction of force and counteracting force. Consent for photos. Highlight Landmarks.

CONTRIDICTIONS: Aspiration risks; behaviors of concern; medically indicated risks; sensory processing disorders (hypersensitive)


Take the opportunity to dig deeper:


- Transfer methods (standing / slide/ sling)
- Any triggers for tone
- 24hr positioning needs -? Bed positioning
- Skin integrity
- Review current seating system

Phase Three: Sitting MAT Assessment

Visual

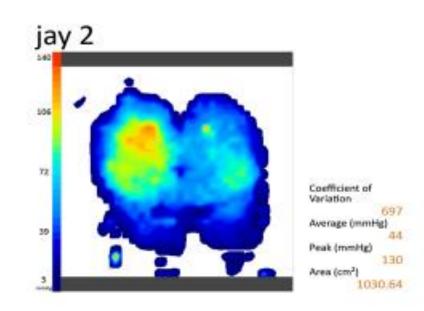
Phase Three: Sitting MAT Assessment

 $\underline{https://www.occupationaltherapy.com/articles/wheelchair-seating-assessment-2845}$

Phase Three: Sitting MAT Assessment

Hands-on, support, and record. Consent for photos. Highlight Landmarks and where postural support is required. Take anthropometric measurements.

Take the opportunity to dig deeper:


- Sitting balance
- Impact of posture/ interventions on reach (note compensatory patterns)
- Impact of gravity on tone
- Finding the balance between correction and comfort
- Review head and neck control, and assess visual field.

Complimentary Tools

- Pressure Map Imagery
- Loop+ Activity tracker data reports

Functional Task Analysis

Photos of Measurable Outcomes

Anatomical Area	Existing Relation to neutral on all 3 planes	MAT outcomes	Counteracting forces & location	Outcomes to base of support
Pelvis	(F) Moderate LHS obliquity (S) Mild anterior pelvic tilt (T) Mild Left rotation	(F) Non- reducible (S) Reducible towards N (T) Reducible to N	 LHS P GT ≥ D thigh support Leg length discrepancy RHS 	 Cushion GT buildup under cushion to maintain envelop and immersion, Lateral R hip support Posterior slope in cushion from front of cushion, lumber + PSIS back support, pelvis position belt Custom cut out RHS 1" accommodation of leg length discrepancy, IT well, pelvic positioning belt

Anatomical Area	Existing Relation to neutral on all 3 planes	MAT outcomes	Counteracting forces & location	Outcomes to base of support
Lower Limbs	(F) IR + ADduction RHS, ER + ABduction LHS (S) ≤90° thigh to trunk angle, 90° thigh to shin, N foot PF (T) RHS rotating to Left	(F) Reducible towards N (S) Reducible towards N (T) Reducible towards N	 Reducible allowing RHS thigh discrepancy ≥ Distal thigh loading Reducible allowing RHS thigh discrepancy 	 Custom cut out RHS 1" accommodation of leg length discrepancy, Thigh trough contouring medial and lateral thigh supports in cushion Posterior slope in cushion from front of cushion, accommodating FP height Custom cut out RHS 1" accommodation of leg length discrepancy, IT well, accommodating FP placement

Anatomical Area	Existing Relation to neutral on all 3 planes	MAT outcomes	Counteracting forces & location	Outcomes to seated supports
Trunk	(F) Moderate Convex Scoliosis LHS (S) Mild lumbar lordosis (T) Neutral	Prop sitter (F) Mild Reducible towards N (S) Reducible towards N (T) Reducible towards N with Pelvic rotation correction	 Reducible allowing LHS Obliquity support, Lateral dispersed force to convex apex LHS Lateral dispersed force above concave apex RHS angular P thorax LHS, A thorax RHS de-rotation support 	 Off- set lateral back support, broad surface with angle adjustments Standard contour back support with combined PSIS and Lumber adjustment, firm positioning for RHS thorax support 90° thigh to trunk back angle

Anatomical Area	Existing Relation to neutral on all 3 planes	MAT outcomes	Counteracting forces & location	Outcomes to seated support
Upper Limbs	(F) Forearms toward midline (S) Mild Shoulder protraction, Elbow F ≤90°, no wrist supports (T) Neutral	Prop Sitter Sustained trunk extension through forearm support ≥ functional output within midline power zone	- Disperse forearm support across power zone	 Tray surface for positioning elbows at 90° with neutral shoulders Height adjustable wide arm pads water fall when tray not it use with neutral shoulders
Head	(F) Midline (S) Mild Cervical hyperflexion (T) Neutral	Independent head control Cervical stacking toward	- Head support for car transport only	 Maintain PSIS and lumber spine stacking to support cervical spine alignment

Make comment on : Position of Symmetry Position of Comfort/Tolerance Position of Function

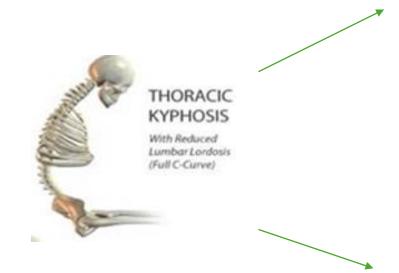
Wheelchair setup and Trunk positioning

Flexible

SCOLIOSIS

- Ensuring appropriate seat base
- Increasing lateral supports

Fixed


- Accommodating curvature with equipment
 - Ensuring that apex of trunk is well supported
- Use of tilt
- Appropriate head support mounts

Equipment Changes:

- Seating surface (Width, depth)
- Armrest height
- Joystick positioning
- ? Set up of functional activities

Wheelchair setup and Trunk positioning

<u>Flexible</u>

- Increasing posterior pelvic supports
- Change Seat angle

Fixed

- Accommodating curvature with equipment
- Use of tilt
- Chest harness

Equipment Changes:

- Seat depth
- Backrest positioning
- Leg rest position too high
- Armrest height
- Joystick positioning
- ? Set up of functional activities

Wheelchair setup and Trunk positioning

<u>Flexible</u>

- Increasing posterior pelvic supports
- Change Seat angle

Fixed

- Accommodating curvature with equipment
- Use of tilt
- Chest harness

Equipment Changes:

- Seat depth
- Backrest positioning
- Armrest height
- Lack of LL support
- Joystick positioning
- ? Set up of functional activities

Using the data you have collected

• Identify problems you want to fix, and non-negotiable compromises

REHAE

- Cover off the key seating principles:
 - Base of support
 - Know the positions of alignment vs comfort vs function
 - Know where supporting forces need to be match these with equipment features
- Collaborate with your suppliers and share your outcomes.
- Use this data in your outcome measures.
 - Before and after photos
 - Improvement in a person's physical capacity

Take Home Messages:

 Take away confidence from what you have learned today to feel postures and create balance for improved function.

- There is always more to learn!
 - An in-depth understanding of muscle tone and spasticity
 - Specific diagnosis
 - Wheelchair set-ups
- Teamwork makes the dream work!
 - Take a multidisciplinary approach.
 - Know the role of your supplier in the process
- State Spinal Cord Injury Service NSW has developed an online Spinal Seating Education Modules
 - https://aci.health.nsw.gov.au/networks/spinal-cord-injury/spinal-seating

Presented By:

Jacelyn Goh (Clinical Educator/ Product Specialist)

jacelyn@lindsrehab.com.au

Please remember to fill out our survey

References and Supporting Documents:

- ATP Series, Gravity & Seating by Laurie Watanabe; April 2014 https://mobilitymgmt.com/Articles/2014/04/01/Gravity-Seating.aspx?p=1
- Dean, C (1999). "Sitting balance I: trunk—arm coordination and the contribution of the lower limbs during self-paced reaching in sitting". Gait & Posture. 10 (2): 135–46.
- Edmondston, Stephen J.; Sharp, Michael; Symes, Andew; Alhabib, Nawaf; Allison, Garry T. (2011). "Changes in mechanical load and extensor muscle activity in the cervico-thoracic spine induced by sitting posture modification". Ergonomics. 54 (2): 179–86.
- Effect of Wheelchair Tilt-In-Space and Recline Angles on Skin Perfusion Over the Ischial Tuberosity in People With Spinal Cord Injury; Yih-Kuen Jan, PT, PhD, Maria A. Jones, PT, PhD, ATP, Meheroz H. Rabadi, MD, Robert D. Foreman, PhD, and Amy Thiessen, PT, MEd, NCS, ATP; Arch Phys Med Rehabil. Author manuscript; available in PMC 2011 Nov 1. Arch Phys Med Rehabil. 2010 Nov; 91(11): 1758–1764.
- Lange, M. (2016, April 20). What is Dynamic Seating? A definition. Retrieved from http://www.seatingdynamics.com/2016/04/20/dynamic-seating-definition/
- Lueder R. (2005) Ergonomics of Sitting and Seating Humanics ErgoSystems, Inc. Retrieved 14 July 2011
- RESNA Position on the Application of Dynamic Seating; Rehabilitation Engineering & Assistive Technology Society of North America, Michelle Lange, OTR, ABDA, ATP; Barbara Crane, PT, PhD, ATP/SMS; Frederick J. Diamond; Suzanne Eason, OT/L; Jessica Presperin Pedersen OTD, MBA, OTR/L ATP/SMS; Greg Peek https://www.resna.org/Portals/0/RESNA%20Position%20on%20the%20Application%20of%20Dynamic%20Seating.pdf
- RESNA Position on the Application of Tilt, Recline, and Elevating Legrests for Wheelchairs; Rehabilitation Engineering & Assistive Technology Society of North America Brad E. Dicianno, MD; Elizabeth Margaria, BS; Juliana Arva, MS, ATP; Jenny M. Lieberman, MS, OTR/L, ATP; Mark R. Schmeler, PhD, OTR/L, ATP; Ana Souza, MS, PT; Kevin Phillips, CRTS; Michelle Lange, OTR, ABDA, ATP; Rosemarie Cooper, MPT, ATP; Kim Davis MS, PT, ATP; and Kendra L. Betz, MSPT, ATP http://www.rstce.pitt.edu/RSTCE_Resources/Resna_Position_on_Tilt_Recline_Elevat_Legrest.pdf
- Sonenblum, S.E., & Sprigle, S. "You Got To Move It, Move It! Pressure Reliefs, Weight Shifts, And Wheelchair Mobility In Individuals With SCI"; https://www.resna.org/sites/default/files/conference/2016/wheelchair_seating/sonenblum.html
- Sonenblum, S. E., Sprigle, S., & Martin, J. S. (In Press). Everyday sitting behavior of full time wheelchair users. J Rehabil Res Dev.
- Sonenblum, S. E., & Sprigle, S. H. (2011). The impact of tilting on blood flow and localized tissue loading. J Tissue Viability, 20(1), 3-13.
- https://www.seatingdynamics.com/resources/
- http://www.pdgmobility.com/index.html

References and Supporting Documents:

- Buck, S. (2017). More Than 4 Wheels
- International PI Clinical Guidelines 2019; www.woundsaustralia.com.au
- Houghton PE, Campbell KE & CPG Panel (2013). Canadian Best Practice Guidelines for the Prevention and Management of Pressure Ulcers in People with Spinal Cord Injury. A resource handbook for clinicians. https://onf.org/wp-content/uploads/2019/04/Pressure_Ulcers_Best_Practice_Guideline_Final_web4.pdf
- Lange, M. & Minkel, J.L. (2018). Seating and Wheeled Mobility. A Clinical Resource Guide
- Permobil Clinical Hub; https://hub.permobil.com.au/permobil-on-demand
- Sonenblum, S.E., & Sprigle, S. "You Got To Move It, Move It! Pressure Reliefs, Weight Shifts, And Wheelchair Mobility In Individuals With SCI"; https://www.resna.org/sites/default/files/conference/2016/wheelchair_seating/sonenblum.html
- Spinal Cord Injury Service of NSW: *Pressure Injury Toolkit For Spinal Cord Injury and Spina Bifida*. https://aci.health.nsw.gov.au/networks/spinal-cord-injury/pi-toolkit/pressure-injury-in-spinal-cord-injury
- Waugh, K., et al. (2013). Glossary of Wheelchair Terms and Definitions. Version 1.0.
- Waugh, K., Crane, B., et al. (2013). A Clinical Application Guide to Standardized Wheelchair Seating Measure of the Body and Seating Support Surfaces. Revised Edition.
- Wheel Air: https://wheelair.co.uk/
- Spinal Outreach Team QLD;
 - https://www.health.qld.gov.au/_data/assets/pdf_file/0031/432877/mattress-trial-evaluation.pdf
 - https://www.health.qld.gov.au/__data/assets/pdf_file/0024/423951/msc-assess.pdf
- Sunrise Medical Education in Motion; https://www.sunrisemedical.com.au/education-in-motion
 - https://www.sunrisemedical.com.au/education-in-motion/resources/how-to-manage-microclimate-1
 - https://www.sunrisemedical.com.au/education-in-motion/resources/cushion-material-selection
 - https://www.sunrisemedical.com.au/education-in-motion/resources/cushion-properties-1

